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We study the dynamics of a quantum particle governed by a linear Schrödinger equation
with a scaled Gaussian potential. In the weak coupling limit the average dynamics of
such a particle can be described by a linear Boltzmann equation. In this work we prove a
bound for the rate at which the average dynamics of the quantum particle approach linear
Boltzmann equation dynamics. For the so called simple diagrams, we use a stationary
phase approach to establish an asymptotic expansion that provides the bound. Our
stationary phase approach also provides a simple, formal method for computing the
Boltzmann limit. Our work uses and extends results developed by L. Erdös and H.T.
Yau.
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1. INTRODUCTION

If a quantum particle moves through a potential that varies on a much longer scale
than the particle’s wavelength then the dynamics of the particle are approximated
by the Hamilton-Jacobi equations of classical particle motion. (5) This well known
result allows one to recover Newtonian mechanics from quantum mechanics. A
more difficult question is to describe the dynamics of a quantum particle traveling
through a potential that varies on the same scale as the particle itself.

When the potential varies on the same scale as a quantum particle we of-
ten have a stochastic rather than a deterministic description of the potential. For
instance, the potential within a semiconductor can be modeled by a random po-
tential. We are led then to ask the following question: what are the dynamics of
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a quantum particle traveling through a random potential that varies on the same
scale as the particle itself?

The weak coupling Schrödinger equation models a quantum particle moving
through a weak random potential that varies on the same scale as the particle.
In Refs. 3 and 8 it was shown that the average dynamics of such a particle can
be characterized by a linear Boltzmann equation. In Refs. 1 a similar result was
shown for the case of a time varying potential. The linear Boltzmann equation
does not describe the motion of a classical particle moving through a potential. In
this sense, the results of Refs. 3 and 8 give us a situation in which the dynamics
of a quantum particle cannot be reduced to Newtonian dynamics.

In this work we derive a bound for the difference between the average quantum
particle dynamics of the weak coupling Schrödinger equation and the dynamics
of the linear Boltzmann equation. We prove our bound through an asymptotic
expansion based on a stationary phase analysis. We apply our stationary phase
analysis only to the simple diagrams discussed in Refs. 3. In principle one should
be able to establish an expansion for the non-simple diagrams of Refs. 3, but our
result does not require this since the simple diagrams carry the Boltzmann limit.
Beyond the technical nature of our result, we feel that our analysis provides a
valuable formalism in understanding the Boltzmann limit. Our stationary phase
analysis provides an intuitive, formal method for understanding the weak coupling
limit.

1.1. The Weak Coupling Problem

We study the weak coupling Schrödinger equation in the following scaling:

iεψt (t, x) + 1

2
ε2�ψ(t, x) − √

εV
( x

ε

)
ψ(t, x) = 0; (1.1)

where we assume that V is a stationary Gaussian field. We let R(x) be the covari-
ance function of V .

R(x) = E[V (y)V (x + y)]. (1.2)

We assume that R satisfies the following conditions:

R is spherically symmetric;
For j = 0, . . . , 8, i = 1, 2, 3, ∂

j
i R̂(p1, p2, p3) exists;

For j = 0, . . . , 8, i = 1, 2, 3,
∫
�d dp(1 + |p|)|∂ j

i R̂(p1, p2, p3)| ≤ ∞.

We let d be the spatial dimension of the weak coupling equation. We consider
only the case d = 3. We take our initial data to be of WKB form. More specifically,
let h, S ∈ S(�d ), where S(�d ) is Schwartz space. Then the initial data is of the
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following form:

ψ(0, x) = h(x) exp

[
i S(x)

ε

]
(1.3)

We want to understand the average dynamics of the wave function as ε → 0.
We will refer to the limit ε → 0 as the weak coupling limit.

It is well known that the dynamics of the linear Schrödinger equation are
best understood in position-momentum phase space. A tool used in describing
the phase space density of a wave function is the Wigner Transform. (4,6) The
Wigner Transform transforms the wave function ψ(t, x) into a phase space func-
tion Wψ (t, x, p).

Wψ (t, x, p) = 1

(2π )d

∫

�d

dyeip·yψ
(

t, x − y

2

)
ψ̄

(
t, x + y

2

)
(1.4)

or equivalently

Wψ (t, x, p) = 1

(2π )d

∫

�d

dqeix ·qψ̂
(

t, p + q

2

)
¯̂
ψ

(
t, p − q

2

)
. (1.5)

The Wigner transform preserves the position and momentum densities of the
wave function. That is, we have the following identities for any wave function ψ :

|ψ(t, x)|2 =
∫

dpW (t, x, p).

|ψ̂(t, p)|2 =
∫

dxW (t, x, p). (1.6)

But one must be careful when using the Wigner transform because W (t, x, p) is
not positive pointwise and therefore may not be thought of as a density. The Wigner
transform is best thought of as an element of S ′(�2d ). In fact, for J ∈ S(�2d ) we
have

|(Wψ (t), J )| ≤ 1

(2π )d/2

∫
dy

∣∣∣∣sup
x

∫
dp exp[i p · y]J (x, p)

∣∣∣∣ ‖ψ(t)‖2
2. (1.7)

If we consider the Wigner transform under the scaling 1
εd W (t, x,

p
ε

) and
take the weak coupling limit, assuming nice initial data (which our WKB initial
data satisfies), the limit exists in S ′(�2d ) and it is a positive measure with total
probability ‖ψ‖2

2. (4,6) This scaling is the appropriate scaling from which to examine
the dynamics of the Schrödinger equation since the momentum probability density
of a quantum particle is 1

εd |ψ̂( p
ε

)|2. (5) We set then

Wε(t, x, p) = 1

εd
Wψ

(
t, x,

p

ε

)
. (1.8)

and we have that limε→0 Wε(t, x, p) is a probability measure.
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Using the Wigner transform, L. Erdös and H.T. Yau proved the following
result: (3)

Theorem 1. Let B(t, x, p) be the solution of following linear Boltzmann equa-
tion in C([0,∞),S ′(�d × �d )):

Bt (t, x, p) + p · ∇x B(t, x, p) =
∫

dp′σ (p′, p)B(t, x, p′) − �(p)B(t, x, p)

B(0, x, p) = h2(x)δ(p − ∇S(x)) (1.9)

where

σ (p, q) = R̂(p − q)δ(p2 − q2).

�(p) =
∫

dqσ (p, q). (1.10)

Then in S ′(�d × �d ) with d = 2 or d = 3:

E[Wε(t, z, p)] ⇀ B(t, z, p) (1.11).

Our main result is the following error bound:

Theorem 2. In the case of d = 3:

|(E[Wε(t)], J ) − (B(t), J )| ≤ C(δ, t, J )ε
1

18 −δ (1.12)

for any δ > 0 and J (x, p) ∈ S(�d × �d ). The constant C(δ, t, J ) is finite but
depends on the values of t, δ, and J . As δ → 0, C(δ, t, J ) → ∞.

We have two goals in this paper. First, we will use stationary phase expansions
to formally analyze the so called simple diagrams of the weak coupling problem.
Second, we will prove Theorem 2 by showing that our formal stationary phase
expansions of the simple diagrams actually hold within the context of the weak
coupling problem.

1.2. Stationary Phase Expansions

As will be explained in Sec. 2 the analysis of the weak coupling problem can
be reduced to the computation of stationary phase integrals. A typical stationary
phase integral of dimension n has the following form:∫




dx exp[iφ(x)/ε] f (x); (1.13)

where 
 ⊆ �n , f and φ are real valued functions on �n , and φ has critical points
inside 
. If f , φ, and 
 are sufficiently ‘nice’ then the stationary phase integral
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will have the following asymptotic expansion. (2) In order to make the formula
simple we assume that x0 is the only critical point of φ inside 
.

∫




dx exp[iφ(x)/ε] f (x)

= (2πε)n/2

|∇2φ(x0)|1/2
exp

[
i
π

4
sig(∇2φ(x0))

]
exp[iφ(x0)/ε] f (x0) + O

(
ε

n+1
2
)
; (1.14)

where for a matrix M , sig(M) is the signature of M .
The basic technical goal of this paper is to justify and apply stationary phase

asymptotic expansions to the integrals that arise in the weak coupling problem.
The difficulty that we encounter is that the stationary phase integrals we consider
are not ‘nice’ for three reasons.

First, if we use standard stationary phase arguments we require bounds on the
nth derivative of f . This is fine for fixed n, but we require bounds for arbitrarily
large n. We would require then some type of uniform bound on the derivatives of
f . We cannot assume this for the form of f that we will need to analyze.

Second, our stationary phase integrals involve integration over com-
plicated regions. 
 for us will be a complicated, non-smooth region. Al-
though theoretically this is not an obstacle to applying standard stationary
phase arguments, in practice we have found the computations to be very
cumbersome.

Third, our stationary phase points are arbitrarily close to the boundary of 
.
In a standard stationary phase problem one works with a fixed set of critical points
for any ε. This means that the critical points are either on the boundary of 
 or
infinitely far from the boundary in terms of order ε. However, in our case for any
given ε we will have to consider situations where the critical point is arbitrarily
close or actually on the boundary. This is difficult to deal with especially within
the context of a complicated, non-smooth boundary.

Our analysis of the stationary phase integrals encountered in the weak cou-
pling problem will proceed along two lines. First, we want to develop a formal
method for computing the stationary phase integrals. Second, we want to compute
the stationary phase integrals rigorously and show that our formal assumptions
lead to the correct results.

We make the following formal assumption:

FORMAL STATIONARY PHASE EXPANSION

Let x0 be the only critical point of φ. If x0 is in the interior of 
 then we assume
that the following expansion holds:



52 Rottenstreich

∣∣∣∣
∫




dx exp[iφ(x)/ε] f (x)

− (2πε)n/2

|∇2φ(x0)|1/2
exp

[
i
π

4
sig(∇2φ(x0))

]
exp[iφ(x0)/ε] f (x0)

∣∣∣∣

≤ Cnε
n+1

2

∫




dx | f (x)|. (1.15)

where C is a constant independent of n, 
, f , ε, and φ.

This assumption is not true for general 
, f , and φ. However, the assumption
will be true in the case of ‘nice’ 
, f , and φ. In this sense our formal assumption
reflects a belief that although our stationary phase integrals are non-standard, their
asymptotic formulas are standard.

1.3. Notation

Before proceeding we set some notation and conventions that we use through-
out the paper. We will use the constant C to describe any real number that does not
change in the various limits that we will take and that does not depend on the time
variable t . If x ∈ C then we let x̄ represent the complex conjugate of x. S(�m)
represents the space of Schwartz functions on �m .

The variables s j , s j,k , s ′
j , and s ′

j,k will be used to represent time coordinates
while p j , p j,k , p′

j , and p′
j,k will be used as momentum variables. The variable

x will be used to represent spacial coordinates. Unless otherwise noted, integrals
over momentum and space variables are taken over all of �d . For f : �m → C

and g : �m → C we define:

f̂ (p) = 1

(2π )m/2

∫

�m

dx exp[−i x · p] f (x),

( f, g) =
∫

�m

dx f̄ (x)g(x). (1.16)

We will encounter various nested time integrations. In order to compactify
our formulas we introduce the following notation.

∫ t,n

ds =
∫ t

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3 . . .

∫ sn−1

0
dsn.

∫ t,n

ds ′ =
∫ t

0
ds ′

1

∫ s ′
1

0
ds ′

2

∫ s ′
2

0
ds ′

3 . . .

∫ sn−1′

0
ds ′

n.

�s j = s j − s ′
j .

Tj = s j − s j−1, T ′
j = s ′

j − s ′
j−1. (1.17)
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We also introduce the following notation for integrating the �s j variables
over an arbitrary region.

∫




d�s =
∫




d�s1d�s2 . . . d�sn where 
 is a region in �n. (1.18)

When we deal with momentum integrations it will often be convenient to
switch to spherical coordinates. For a momentum variable p j we associate the
variables r j and µ̂ j with the relationship

µ̂ j = p j

|p j | , r j = |p j |. (1.19)

We let S(1) be the unit sphere in �d . Then we set the following notation for
an iterated collection of surface integrals.

∫ n

dµ̂ =
∫

S(1)
dµ̂0

∫

S(1)
dµ̂1 . . .

∫

S(1)
dµ̂n−1. (1.20)

2. THE FEYNMAN DIAGRAM EXPANSION

In this section we explain the basic method that was used in Refs. 3 to analyze
the weak coupling Schrödinger problem. We include this discussion for the sake
of clarity and completeness. Recall that our main goal is to compute an asymptotic
expansion in ε of the following expression:

∫
dpdx J (x, p)E[Wε(t, x, p)] (2.1)

We will compute this quantity by expressing it as a sum of Feynman diagrams.
We will then compare this sum of Feynman diagrams to the Born expansion of the
Boltzmann equation and show that the two are the same up to a small error that
we can control.

In this section we first recall the Born expansion solution of the Boltzmann
equation. We then show how to expand the wave function ψ(t, x) in a Born
series. Finally we use this Born expansion to develop an expansion for the Wigner
transform of ψ(t, x).

2.1. Born Expansion of the Boltzmann Equation

We solve the Boltzmann equation given by (1.9) through a Born expansion.
Set s0 = t and sn+1 = 0. Define Bn(t, x, p) as follows:

Bn(t, x, p0) =
∫ t,n

ds

∫
dp1 . . . dpnUnh2(xn)δ(pn − ∇S(xn)); (2.2)
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where

Un =
(

n−1∏
k=0

exp[−�(pk)(sk − sk+1)]σ (pk, pk+1)

)
exp[−�(pn)sn],

xn = x −
n∑

j=0

p j (s j − s j+1). (2.3)

Bn is the nth term in the Born expansion of the Boltzmann equation. The
Born series converges. In fact we have the following lemmas.

Lemma 2.1. Let J (x, p) ∈ S(�d × �d ). Then

|(Bn(t), J )| ≤ (Ct)n

n!
‖J‖∞; (2.4)

where the constant C is independent of n.

Lemma 2.2. Let

B(t, x, p) =
∞∑

n=0

Bn(t, x, p). (2.5)

Then B(t, x, p) solves the Boltzmann equation given by (1.9) in C([0,∞),
S ′(�d × �d )).

2.2. The Born Expansion of ψ

Let G0(t, x) be the free evolution Green’s function for the Schrödinger equa-
tion in the same scaling as (1.1), the weak coupling Schrödinger equation. That
is,

iε∂t G0(t, x) + 1

2
ε2�G0(t, x) = 0.

G0(0, x) = δ(x). (2.6)

We can write out the Born expansion of ψ̂(t, p0) up to order N . Let ψ̂(p) =
ψ̂(0, p). Set for n > 0,

ψ̂n

(
t,

p0

ε

)
=

( −i√
ε

)n ∫ t,n

ds

∫
dp1 . . . dpnG0

(
t − s1,

p0

ε

)
V̂ (p0 − p1)

× G0

(
s1 − s2,

p1

ε

)
V̂ (p1 − p2) . . . G0

(
sn−1 − sn,

pn−1

ε

)

× V̂ (pn−1 − pn)G0

(
sn,

pn

ε

)
ψ̂

( pn

ε

)
. (2.7)
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For n = 0 set

ψ̂0

(
t,

p0

ε

)
= G0

(
t,

p0

ε

)
ψ̂

( p0

ε

)
(2.8)

and for the remainder term in the Born expansion define �n as follows:

�n

(
t,

p0

ε

)
= −i√

ε

∫ t

0
ds

∫
dp1G

(
t − s,

p0

ε

)
V̂ (p0 − p1)ψ̂n

(
s,

p1

ε

)
; (2.9)

where G(t, p) is the Green’s function of the weak coupling equation. We then have
the following expansion,

ψ̂
(

t,
p0

ε

)
=

N∑
j=0

ψ̂ j

(
t,

p0

ε

)
+ �N

(
t,

p0

ε

)
(2.10)

Following, (3) we represent a typical term, ψ̂ j (t,
p0

ε
), in the Born expansion

by a diagram as shown in Fig. 1. Each edge in the diagram is associated with a
momentum. Each vertex in the diagram is associated with a potential and a time
found in the expansion given by (2.7). In order to make our formulas and diagrams
more readable we introduce the following notation for the potentials.

V̂( j,T ) = V̂ (p j − p j+1)

V̂( j,B) = ¯̂V (p′
j − p′

j+1) (2.11)

The subscripts T and B stand for top and bottom respectively. This nomenclature
will make sense when we form Feynman diagrams in the next subsection.

We can express ¯̂
ψk(t, p′

0
ε

) as a diagram just as we did for ψ̂ j (t,
p0

ε
). We will

use prime notation for the case of a complex conjugated wave function as shown
in Fig. 2.

Fig. 1. Diagrams for Born expansion terms.
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Fig. 2. Diagram for complex conjugate Born term.

2.3. The Wigner Transform Expansion

The evaluation of the Wigner transform against a test function, Eq. (2.1),
can now be expanded through the Born series of ψ . First we notice the following
equality which follows from a Plancherel argument in x on (2.1) and the use of
(1.5).

∫
dpdx J (x, p)E

[
Wε

(
t, x,

p

ε

)]

= 1

(2π )d/2

∫
dpdζ

¯̂J (ζ, p)
1

εd
E

[
ψ̂

(
t,

p

ε
+ ζ

2

)
¯̂
ψ

(
t,

p

ε
− ζ

2

)]
.(2.12)

This equality allows us to plug in our Born expansion for ψ(t) and arrive at
the following expansion for (2.1).

∫
dpdx J (x, p)

1

εd
E

[
Wψ(t)

(
x,

p

ε

)]
= L1 + L2 + L3. (2.13)

Where we set

L1 = 1

(2π )d/2

N∑
j=0

N∑
k=0

∫
dpdζ

¯̂J (ζ, p)
1

εd
E

[
ψ̂ j

(
t,

p

ε
+ ζ

2

)
¯̂
ψk

(
t,

p

ε
− ζ

2

)]
,

L2 = 1

(2π )d/2

N∑
j ′=0

∫
dpdζ

¯̂J (ζ, p)
1

εd
2Re

(
E

[
ψ̂ j ′

(
t,

p

ε
+ ζ

2

)
�̄N

(
t,

p

ε
− ζ

2

)])
,

L3 = 1

(2π )d/2

∫
dpdζ

¯̂J (ζ, p)
1

εd
E

[
�N

(
t,

p

ε
+ ζ

2

)
�̄N

(
t,

p

ε
− ζ

2

)]
. (2.14)

We will eventually show that L1 gives the Boltzmann limit while L2 and L3

can be treated as error terms.

2.3.1. Feynman Diagrams

In order to evaluate the Wigner transform against a test function we see from
(2.13) that we must be able to compute expressions of the following form:

E

[
ψ̂ j

(
t,

p0

ε

)
¯̂
ψk

(
t,

p′
0

ε

)]
. (2.15)
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In computing E[ψ̂ j (t)
¯̂
ψk(t)] the expectation is applied to the potential terms V̂ in

(2.7). Associated with the term ψ̂ j (t) we have the potential factors:
∏ j−1

h=0 V̂(h,T ).

Associated with the term ¯̂
ψk(t) we have the potential factors:

∏k−1
h′=0 V̂(h′,B). We

then need to consider the expression:

E

[
j−1∏
h=0

V̂(h,T )

k−1∏
h′=0

V̂(h′,B)

]
. (2.16)

We use the Gaussian structure of V to compute this expression explicitly.
We have j + k potentials. Since V is Gaussian if j + k is odd then the above
expectation evaluates to zero. So we assume that j + k is even. Let π represent a
pairing of the potentials. More precisely π satisfies the following criteria.

Let E j,k = {(0, T ), (1, T ), . . . , ( j − 1, T ), (0, B), (1, B), . . . , (k − 1, B)}.
π : E j,k → E j,k .

π (π ) = i.

For e ∈ E j,k, π (e) �= e. (2.17)

Our intuition here is that π pairs the potential V̂e with V̂π(e). Wick’s Theorem
gives us the following:

E

[
j−1∏
h=0

V̂h,T

k−1∏
h′=0

¯̂V h′,B

]
=

∑
π

⎛
⎝ ∏

e∈E j,k

E[V̂e V̂π(e)]

⎞
⎠

1/2

. (2.18)

We then define an expectation associated with a given pairing.

Eπ

[
j−1∏
h=0

V̂h,T

k−1∏
h′=0

¯̂V h′,B

]
=

⎛
⎝ ∏

e∈E j,k

E[V̂e V̂π(e)]

⎞
⎠

1/2

(2.19)

and we may write

E

[
ψ̂ j

(
t,

p0

ε

)
¯̂
ψk

(
t,

p′
0

ε

)]
=

∑
π

Eπ

[
ψ̂ j

(
t,

p0

ε

)
¯̂
ψk

(
t,

p′
0

ε

)]
. (2.20)

Following, (3) we associate with each expectation Eπ [ψ̂ j (t,
p0

ε
) ¯̂
ψk(t, p′

0
ε

)] a
Feynman diagram. The Feynman diagram consists of two diagrams representing
the Born expansions of ψ̂ j and ¯̂

ψk connected by dashed lines. The dashed lines
are referred to as pairing lines and connect the vertices associated with the poten-
tials that are paired. Figure 3 represents the Feynman diagram corresponding to

Eπ [ψ̂2(t, p0

ε
) ¯̂
ψ2(t, p′

0
ε

)] with π ((0, T )) = π ((1, B)) and π ((1, T )) = π ((0, B)).
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Fig. 3. Feynman Diagram.

We classify our Feynman diagrams into three groups. When j = k and
π ((m, T )) = (m, B) then we refer to the diagram as a ladder diagram. For
j = k = 2, Figure 4 shows the Feynman diagram that is a ladder diagram.

For general j, k a Feynman diagram is said to be a simple diagram if
∃L such that ∃ (h1 < h2 < . . . < hL ), ∃(h′

1 < h′
2 < . . . < h′

L ) for which the fol-
lowing three conditions hold.

1. π ((hm, T )) = (h′
m, B)

2. m /∈ (h1, . . . , hL ) =⇒ π ((m, T )) = (m + 1, T ) or π ((m, T )) = (m −
1, T )

3. m ′ /∈ (h′
1, . . . , h′

L ) =⇒ π ((m ′, B)) = (m ′ + 1, B) or π ((m ′, B)) = (m ′ −
1, B)

This involved definition is graphically very simple. A simple diagram consists
of a collection of non-crossing pairing lines, which we refer to as ladder rungs,
that connect the two wave function diagrams; between these ladder rungs each
vertex is connected to one of its neighbors. Figure 5 shows a simple diagram for
the case j = 6, k = 4.

Ladder diagrams are a type of simple diagram. Any diagram that is not
simple we refer to as a non-simple diagram. The important characteristic of non-
simple diagrams is that they contain pairing lines that cross or pairing lines nested
within each other. This characteristic was exploited by Erdös and Yau to show that
non-simple diagrams have small contribution to (2.1). (3)

Fig. 4. Ladder Diagram for j = k = 2.
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Fig. 5. Simple Diagram for j = 6, k = 4.

3. LADDER DIAGRAMS

In this section we analyze ladder diagrams. We first write down an explicit
formula for ladder diagrams. We then use our formal stationary phase assumption
to write down an asymptotic expansion for the ladder diagrams. Finally, we show
that our formal asymptotic expansion holds rigorously.

3.1. Ladder Diagram Formula

We want to write down an explicit formula for ladder diagrams. That is, we
want formulas for the following expression:

Eπ

[
ψ̂n

(
t,

p0

ε

)
¯̂
ψn

(
t,

p′
0

ε

)]
; (3.1)

where π is a ladder diagram.
We can easily evaluate the expectation of the potentials, given by (2.19), that

is associated with the ladder diagram pairing. Set p0 − p′
0 = ζ . Then

Eπ

[
n−1∏
h=0

V̂h,T

n−1∏
h′=0

¯̂V h′,B

]
=

n−1∏
h=0

E
[
V̂ (ph − ph+1) ¯̂V (p′

h − p′
h+1)

]

=
n−1∏
h=0

R̂(ph − ph+1)δ((ph − ph+1) − (p′
h − p′

h+1))

=
n∏

h=1

R̂(ph−1 − ph)δ((ph − p′
h) − ζ ). (3.2)

Using this formula we can easily find an expression for the n rung ladder
diagram.

E

[
ψ̂n

(
t,

p0

ε

)
¯̂
ψn

(
t,

p′
0

ε

)]

= 1

εn

∫ t,n

ds

∫ t,n

ds ′
∫

dp1 . . . dpn exp

[−i

2ε
φL D

]
fL D; (3.3)
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where

fL D = exp
[−iζ

2

n∑
j=1

p j (Tj + T ′
j )
] n−1∏

h=0

R̂(ph − ph+1)ψ̂

(
pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)

(3.4)
and

φL D(p0, p1, . . . , pn,�s1, . . . ,�sn)

= −p2
0�s1 + p2

1(�s1 − �s2) + . . . + p2
n−1(�sn−1 − �sn) + p2

n�sn. (3.5)

Recall that we are interested in evaluating the Wigner transform against a
test function. In order to do this using the Wigner transform expansion we must
evaluate the different diagrams against a test function. In this section we are
interested in evaluating ladder diagrams against a test function. Specifically we
want to compute an expansion for the following quantity which we label Ln(t):

Ln(t) =
∫

dp0dζ
¯̂J (ζ, p0)

1

εd
Eπ

[
ψ̂n

(
t,

p0

ε
+ ζ

2

)
¯̂
ψn

(
t,

p0

ε
− ζ

2

)]
; (3.6)

where π is the ladder diagram pairing with n rungs. Plugging in our formula for
a ladder diagram of length n, Eq. (3.3), we arrive at the following:

Ln(t) = 1

εd

1

εn

∫ t,n

ds

∫ t,n

ds ′
∫

dp0 . . . dpn

∫
dζ

¯̂J (ζ, p0) exp

[−i

2ε
φL D

]
fL D

(3.7)

The case n = 0 is a special case. Through explicit computations we have the
following identity.

∫
dp0dζ

¯̂J (ζ, p0)
1

εd
ψ̂0

(
t,

p0

ε
+ ζ

2

)
¯̂
ψ0

(
t,

p0

ε
− ζ

2

)

= 1

εd

∫
dpdx J (x, p)W

(
0, x − pt,

p

ε

)
. (3.8)

Keeping this identity in mind, in our analysis of Ln(t) we can assume that n > 0.

3.2. Formal Stationary Phase Expansion for Ladder Diagrams

We start our analysis of Ln(t) by using formal stationary phase arguments.
We reexpress (3.7) as follows:

Ln(t) = 1

εd

1

εn

∫ t,n

ds

∫
dpn

∫
dζ

(∫


n

d�s

∫
dp0 . . . dpn−1 Ĵ (ζ, p0)

× exp

[−i

2ε
φL D

]
fL D

)
; (3.9)
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where 
n is a region in �n defined, through
∫

n

d�s, as follows:
∫


n

d�s =
∫ s1

s1−t
d�s1

∫ s2

�s1+(s2−s1)
d�s2 . . .

∫ sn

�sn−1+(sn−sn−1)
d�sn. (3.10)

We need to apply our formal stationary phase argument to the expression in
parenthesis in (3.9). Our first step will be to compute the stationary phase points
of φL D . This gives us the following stationary phase surface:

�s1 = �s2 = · · · = �sn = 0.

p2
0 = p2

1 = · · · = p2
n. (3.11)

We recall our notation p j = r j µ̂ j . In these coordinates we can integrate
through the stationary phase surface and be left with a stationary phase point.

Ln(t) = 1

εd

1

εn

∫ t,n

ds

∫
dpn

∫
dζ

∫ n

dµ̂Z ; (3.12)

with Z given as follows:

Z (s1, . . . , sn, µ̂0, . . . , µ̂n−1, pn)

=
∫


n

d�s

∫
dr0dr1 . . . drn−1rd−1

0 . . . rd−1
n−1

¯̂J (ζ, p0) exp

[−i

2ε
φL D

]
fL D. (3.13)

We can now apply our formal stationary phase expansions to compute Z . The
integral is a 2n dimensional stationary phase integral. The stationary phase point
of φ, which we label xcp, in the variables �s1, . . . , �sn , r0, . . . , rn−1 is given by
the following coordinates:

�s1 = �s2 = · · · = �sn = 0.

r0 = r1 = · · · = rn−1 = |pn|. (3.14)

In (3.13) above, xcp is a function of pn . As long as |pn| �= 0 then xcp is in the
interior of the region of integration 
n × (�+)n . The case |pn| = 0 has Lebesgue
measure zero in (3.12), so it will have no effect.

Through explicit computation we have

det (∇2φ(xcp)) = |pn|2n;

signature (∇2φ(xcp)) = 0. (3.15)

Finally, we have
∫


n

d�s

∫
dr0dr1 . . . drn−1rd−1

0 . . . rd−1
n−1

∣∣ ¯̂J (ζ, p0) fL D

∣∣

≤ (Ct)n

∣∣∣∣ψ
(

pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)∣∣∣∣ sup
p

∣∣ Ĵ (ζ, p)
∣∣. (3.16)
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We can now apply our formal stationary phase assumptions to arrive at the
bound:

|Z − Zcp| ≤ (Ct)nεn+ 1
2

∣∣∣∣ψ
(

pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)∣∣∣∣ sup
p

∣∣ ¯̂J (ζ, p)
∣∣; (3.17)

where Zcp is given by

Zcp = (2π |pn|ε)n fL D(xcp)

= Ĵ (ζ, |pn|µ̂0) exp

⎡
⎣−i |pn|ζ ·

n∑
j=1

µ̂ j (s j − s j+1)

⎤
⎦ (2π |pn|)n

×
n−1∏
h=0

R̂(|pn|(µ̂h − µ̂h+1))ψ̂

(
pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)
(3.18)

Plugging this result into our expression for Ln(t) given by (3.12) we have,

∣∣Ln(t) − 1

εd

∫ t,n

ds

∫
dpn

∫
dζ Zcp

∣∣ ≤ (Ct2)n

√
ε

n!
. (3.19)

Now we use the Wigner transform formula given by Eq. 1.5 and apply Plancherel
in ζ to arrive at the following bound.

∣∣∣∣Ln(t) − (2π )d/2
∫ t,n

ds

∫
dpn

∫
dx

∫
dµ̂J (x0, |pn|µ̂0)

× (2π |pn|)n
n−1∏
h=0

R̂(|pn|(µ̂h − µ̂h+1))Wε(0, x, pn)

∣∣∣∣ ≤ (Ct2)n

√
ε

n!
; (3.20)

where

x0 = x + |pn|
n∑

j=1

µ̂ j (s j − s j+1) (3.21)

3.3. Proof of Stationary Phase Expansion for Ladder Diagram

Our goal in this section is to prove our formal result for Ln(t) given by (3.20).
In order to prove this stationary phase result we introduce some new notation.

f̃L D = ¯̂J (ζ, p0)
n−1∏
h=0

R̂(ph − ph+1)ψ̂

(
pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)
.

Kn =
∫

dζ

∫
dp0 . . . dpn exp

[−i

2ε
φL D

]
exp

[−iζ

2

n∑
j=1

p j (Tj + T ′
j )

]
f̃L D

(3.22)
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Using this notation we have the following compact form for Ln(t):

Ln(t) = 1

εd

1

εn

∫ t,n

ds

∫


n

d�sKn (3.23)

We now proceed to prove our stationary phase result.

3.3.1. Bounding Kn

Our first goal will be to bound Kn as a function of the time variables.
Specifically, we want to prove the following lemma.

Lemma 3.1

|Kn(�s1, . . . ,�sn)| ≤ Cnεd‖ψ‖2
2Sn (3.24)

where

Sj = 1

1 + |�s1
ε

|3/2

1

1 + |�s1−�s2
ε

|3/2
. . .

1

1 + |�s j−1−�s j

ε
|3/2

(3.25)

In order to prove the above lemma we introduce the following Plancherel
type lemma that is similar to a lemma of H. Spohn(8) but made specific to our case.

Lemma 3.2 Let σ (0,n−1) : {0, . . . , n − 1} → {0, 1}. Let H ∈ C∞(�nd ) and let H
and all its derivatives be in L1(�nd ). Let ζ j ∈ �d . Set ζ = (ζ0, . . . , ζn−1) and
p = (p0, . . . , pn−1). Let σ j = σ ( j). Then for d = 3 we have

∣∣∣∣
∫

dp0 . . . dpn−1 exp(i p2
0v0 + . . . + i p2

n−1vn−1) exp(i p · ζ )H (p)

∣∣∣∣

≤ Cn 1

1 + |v0|3/2
. . .

1

1 + |vn−1|3/2

∫
dp0 . . . dpn−1ϒn(H )

where we define the operator ϒn as follows:

ϒn(H ) =
∑

σ (0,n−1)

|
⎛
⎝

n−1∏
j=0

(σ j + (1 − σ j ))�
2
p j

⎞
⎠ H |. (3.26)

Notice that the linear exponential exp (i p · ζ ) has no effect on the bound.

Proof of Lemma 3.2: We prove the lemma by induction. Set n = 1. If v0 < 1
then we use the following trivial bound,

∣∣∣∣
∫

dp0 exp[i p2
0v0] exp(i p0 · ζ0)H (p0)

∣∣∣∣ ≤
∫

dp0|H (p0)|. (3.27)
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Now take v0 > 1. Then applying Plancherel we have
∣∣∣∣
∫

dp0 exp[i p2
0v0] exp(i p0 · ζ0)H (p0)

∣∣∣∣ ≤ (2π )3/2

v
3/2
0

∫
dx0|Ĥ (x0 − ζ0)|

≤ (2π )3/2

v
3/2
0

∫
dx0|Ĥ (x0)|

≤ (2π )3/2

v
3/2
0

∫

|x0|≤1
dx0|Ĥ (x0)| + (2π )3/2

v
3/2
0

∫

|x0|>1
dx0|Ĥ (x0)|

≤ (2π )3/2

v
3/2
0

[
4π

3

∫
dp0|H (p0)| + 4π

∫
dp0|�2

p0
H (p0)|

]
. (3.28)

Taking these two cases together we have for any v0:
∣∣∣∣
∫

dp0 exp[i p2
0v0] exp(i p0 · ζ0)H (p0)

∣∣∣∣

≤ 8π (2π )3/2 1

1 + v
3/2
0

[
∫

dp0|H (p0)| +
∫

dp0|�2
p0

H (p0)|]. (3.29)

The proof now follows for arbitrary n by a simple inductive argument. �

We now make H specific to Kn by setting H = f̃L D . We have the following
lemma.

Lemma 3.3

ϒn( f̃L D) ≤ 2n
4∑

j0=0

|∇ j0
p0

¯̂J (ζ, p0)|
n−1∏
k=1

8∑
jk=0

|∇ jk R̂(pk−1 − pk)|

× |ψ̂
(

pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)
| (3.30)

and ∫
dζ

∫
dp0 . . . dpnϒn( f̃L D) ≤ Cnεd‖ψ‖2

2. (3.31)

Proof of Lemma 3.3: We prove the second inequality above. In the process we
demonstrate the first inequality as well.

∑
σ (0,n−1)

∫
dζ

∫
dp0 . . . dpn|

⎛
⎝

n−1∏
j=0

(σ j + (1 − σ j )�
2
p j

)

⎞
⎠ f̃L D|
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≤ 2n sup
σ

∫
dζ

∫
dp0 . . . dpn|

⎛
⎝

n−1∏
j=0

(σ j + (1 − σ j )�
2
p j

)

⎞
⎠ f̃L D|

≤ 2n

∫
dζ

∫
dp0 . . . dpn

4∑
j0=0

|∇ j0
p0

¯̂J (ζ, p0)|
n−1∏
k=1

8∑
jk=0

|∇ jk R̂(pk−1 − pk)|

×
∣∣∣∣ψ̂

(
pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)∣∣∣∣

≤ 2nCn−1
∫

dζ

∫
dpn sup

p0

4∑
j0=0

∣∣∇ j0
p0

¯̂J (ζ, p0)
∣∣
∣∣∣∣ψ̂

(
pn

ε
+ ζ

2

)
¯̂
ψ

(
pn

ε
− ζ

2

)∣∣∣∣

≤ 2nCnεd‖ψ‖2
2 (3.32)

�

The proof of Lemma 3.1 now follows from an application of Lemmas 3.2
and 3.3.

3.3.2. Localizing Time Coordinates to Stationary Phase Point

We now show that the main contribution to our integral comes from the
surface �s1 = �s2 = · · · = �sn = 0. Specifically, set h j () as follows:

h j = exp

⎡
⎣−iζ

2

⎛
⎝

j∑
k=1

pk(2Tk) +
n∑

k ′= j+1

pk ′(Tk ′ + Tk ′)

⎞
⎠
⎤
⎦ for j = 0, . . . , n,

Kn, j =
∫

dζ

∫
dp0 . . . dpn exp

[−i

2ε
φL D

]
h j f̃L D,

Ln, j (t) = 1

εd

1

εn

∫ t,n

ds

∫


n

d�sKn, j . (3.33)

We have Ln(t) = Ln,0(t). Our goal in this subsection will be to prove the following
lemma.

Lemma 3.4

|Ln,0(t) − Ln,n(t)| ≤ √
ε

(Ct)n−1(1 + t4)

(n − 1)!
‖ψ‖2

2 (3.34)



66 Rottenstreich

Proof of Lemma 3.4: We first express h j − h j−1.

h j − h j−1 = exp

⎡
⎣−iζ

2
·
( j−1∑

k=1

pk(2Tk) +
n∑

k ′= j

pk ′(Tk ′ + Tk ′)

)⎤
⎦

×
(

exp

[−iζ

2
· p j (�s j − �s j−1)

]
− 1

)
. (3.35)

Applying Lemma 3.2 and the analysis of Lemma 3.3 we have,

|Kn, j − Kn, j−1| ≤ Cn Sn

∫
dζ

∫
dp0 . . . dpnϒn( f̃L D)

4∑
α=0

∣∣∣∣∇α
p j

×
(

exp[
−iζ

2
· p j (�s j − �s j−1)] − 1

) ∣∣∣∣ (3.36)

In contrast to the proof of Lemma 3.3, we have one new term to deal with.
We have,

4∑
α=0

∣∣∣∣∇α
p j

(
exp

[−iζ

2
· p j (�s j − �s j−1)

]
− 1

)∣∣∣∣

× ≤ C(1 + |p j |)(1 + |ζ |4)|(�s j − �s j−1)|(1 + |�s j − �s j−1|3).

≤ C(1 + t3)(1 + |p j |)(1 + |ζ |4)|(�s j − �s j−1)| (3.37)

We then note that we can expand p j as follows:

p j = (p j − p j−1) + · · · + (p1 − p0) + p0; (3.38)

giving

1 + |p j | ≤
(

j∏
k=1

(1 + |pk − pk−1|)
)

(1 + |p0|). (3.39)

Plugging this all in we have the following bound

|Kn, j − Kn, j−1| ≤ Cn(1 + t3)Sn|(�s j − �s j−1)|
∫

dζ

∫
dp0 . . . dpnϒn( f̃L D)

×
(

j∏
k=1

(1 + |pk − pk−1|)
)

(1 + |p0|)(1 + ζ 4) (3.40)

This long expression is almost the same as what we had in the proof of
Lemma 3.3. One difference, seen from examining the bound for ϒn( f̃L D) in
Lemma 3.3 is that instead of integrating R̂(p j − p j+1) we now integrate (1 +
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|p j − p j−1|)R̂(p j − p j+1). This will have no effect by our assumptions of R̂. The
other difference is that we include the factors (1 + ζ 4) and |(�s j − �s j−1)|. The
1 + |ζ |4 term can be controlled by the Ĵ found in the bound for ϒn( f̃L D). So by
the same arguments as in the case of Lemma 3.3 we have

|Kn, j − Kn, j−1| ≤ Cnεd (1 + t3)|(�s j − �s j−1)|‖ψ‖2
2Sn (3.41)

We now note that in
∫

n

d�s each coordinate �s j has its region of integration
contained within [t,−t]. With this in mind we have

|Ln, j − Ln, j−1| ≤ (Ct)n

n!
(1 + t3)‖ψ‖2

2

∫ 2t
ε

−2t
ε

d�s
ε�s

1 + |�s|3/2

≤ √
ε

(Ct)n−1(1 + t4)

n!
‖ψ‖2

2. (3.42)

A sum of n triangle inequalities now finishes the proof. �

3.3.3. Extension of 
n

In this section we will show that replacing the integration over the region

n with an unbounded integration leads to a small error. To demonstrate this we
introduce two new regions of integration: 
n,1 and 
n,2. Recall

∫


n

d�s =
∫ s1

s1−t
d�s1

∫ s2

�s1+(s2−s1)
d�s2 . . .

∫ sn

�sn−1+(sn−sn−1)
d�sn. (3.43)

We set ∫


n,1

d�s =
∫ s1

s1−t
d�s1

∫ s2

(s2−s1)
d�s2 . . .

∫ sn

(sn−sn−1)
d�sn;

∫


n,2

d�s =
∫ ∞

−∞
d�s1

∫ ∞

−∞
d�s2 . . .

∫ ∞

−∞
d�sn. (3.44)

Notice that 
n,2 = �n . We have

Ln,n(t) = 1

εnεd

∫ t,n

ds

∫


n

d�sKn,n, (3.45)

and we define

L (1)
n (t) = 1

εnεd

∫ t,n

ds

∫


n,1

d�sKn,n,

L (2)
n (t) = 1

εnεd

∫ t,n

ds

∫


n,2

d�sKn,n . (3.46)
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Our goal is to show that |Ln,n(t) − L (1)
n (t)| and |L (1)

n (t) − L (2)
n (t)| are

small. Before proceeding to do this we state the following lemma. The proof is
straightforward.

Lemma 3.5 Define

Eγ, j =
∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dt j−1

∫

|t j |>γ

dt j
1

1 + |t1|3/2

1

1 + |t1 − t2|3/2
· · ·

× 1

1 + |t j−1 − t j |3/2
. (3.47)

Then Eγ, j ≤ C jγ −1/2.

We now bound |Ln,n(t) − L (1)
n (t)|. We have the following lemma.

Lemma 3.6

|Ln,n(t) − L (1)
n (t)| ≤ √

ε
(Ct)n−1

√
t

(n − 1)!
‖ψ‖2

2 (3.48)

Proof of Lemma 3.6: We need to show that replacing the region 
n by 
n,1

causes a small error. In order to demonstrate this, we introduce regions � j for
j = 0, . . . , n such that �0 = 
n and �n = 
n,1. We will then show that replacing
the region � j by � j−1 causes a small error. With this in mind, set the following
notation:∫

� j

d�s =
∫ s1

s1−t
d�s1

∫ s2

s2−s1

d�s2 . . .

∫ s j

s j −s j−1

d�s j

×
∫ s j+1

�s j +(s j+1−s j )
d�s j+1 . . .

∫ sn

�sn−1+(sn−sn−1)
d�sn. (3.49)

We also define

L (1, j)
n (t) = 1

εnεd

∫ t,n

ds

∫

� j

d�sKn,n(�s1, . . . , �sn). (3.50)

This gives L (1,1)
n (t) = Ln,n(t) and L (1,n)

n (t) = L (1)
n (t). We now proceed to bound

|L (1, j)
n (t) − L (1, j+1)

n (t)|. We have

L (1, j)
n (t) − L (1, j+1)

n (t) = 1

εnεd

∫ t,n

ds

∫ s1

s1−t
d�s1

∫ s2

s2−s1

d�s2 . . .

∫ s j

s j −s j−1

d�s j

×
∫ s j+1−s j

�s j +(s j+1−s j )
d�s j+1

∫ s j+2

�s j+1+(s j+2−s j+1)
d�s j+2 . . .

∫ sn

�sn−1+(sn−sn−1)
d�sn Kn,n .

(3.51)
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We now apply Lemma 3.1 and the transforms �sk → �sk/ε for k = j +
2, . . . , n. Then we have the following bound:

|L (1, j)
n (t) − L (1, j+1)

n (t)| ≤ Cn

ε j+1
‖ψ‖2

2

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ s j

0
ds j+1

×
∫ ∞

−∞
d�s1 . . .

∫ ∞

−∞
d�s j

∫ �s j +(s j+1−s j )

s j+1−s j

d�s j+1Sj+1
(s j+1)n−( j+1)

(n − ( j + 1))!
. (3.52)

Now split into two cases. First take |�s j | ≤ | s j+1−s j

4 |. Label |L (1, j)
n (t) −

L (1, j+1)
n (t)| with this restriction F1. Then we have after transforming �s j+1 →

�s j+1

ε
:

F1 <
Cn

ε j

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ s j

0
ds j+1

∫
d�s1 . . .

∫
d�s j

×
∫ 5(s j −s j+1)

4ε

s j −s j+1
2ε

d�s j+1Sj
23/2

1 + �s3/2
j+1

(s j+1)n−( j+1)

(n − ( j + 1))!

≤ Cn

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ s j

0
ds j+1

(s j+1)n−( j+1)

(n − ( j + 1))!

√
ε

s j − s j+1

≤ Cn
∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ s j

0
ds j+1

(s j )n−( j+1)

(n − ( j + 1))!

√
ε

s j+1

≤ √
ε

(Ct)n−1
√

t

(n − 1)!
. (3.53)

Now take the case |�s j | > | s j+1−s j

4 |. Label |L (1, j)
n (t) − L (1, j+1)

n (t)| with this
restriction F2. Then applying Lemma 3.3.3 we have

F2 <

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ s j

0
ds j+1

(s j+1)n−( j+1)

(n − ( j + 1))!
E s j −s j+1

4ε
, j

≤ Cn
∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ s j

0
ds j+1

(s j+1)n−( j+1)

(n − ( j + 1))!

√
ε

s j − s j+1

≤ √
ε

(Ct)n−1
√

t

(n − 1)!
. (3.54)

Summing these error bounds over all j and applying the triangle inequality
finishes the proof. �
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Next we bound |L (1)
n (t) − L (2)

n (t)|. We have the following lemma whose
proof is very similar to that of Lemma 3.6.

Lemma 3.7

∣∣L (1)
n (t) − L (2)

n (t)
∣∣ ≤ √

ε
(Ct)n−1

√
t

(n − 1)!
‖ψ‖2

2. (3.55)

3.3.4. Localizing Momentum Coordinates to Stationary Phase Point

We have the following formula for L (2)
n (t):

L (2)
n (t) = 1

εd

1

εn

∫ t,n

ds

∫

�n

d�s1 . . . d�sn

×
∫

dζ

∫
dp0 . . . dpn exp

[−i

2ε
φL D

]
hn f̃L D; (3.56)

where we recall that

hn = exp

[
−iζ ·

(
j∑

k=1

p j (s j − s j−1)

)]
. (3.57)

In this section we prove the following lemma.

Lemma 3.8

L (2)
n (t) = (2π )d/2

∫ t,n

ds

∫
dpn(2π |pn|)n

∫
dx

∫ n−1

dµ̂J (x, |pn|µ̂0)

×
n−1∏
j=0

R̂(|pn|µ̂ j − |pn|µ̂ j+1)Wε(0, x −
n∑

k=0

|pn|µ̂k(sk − sk+1), pn), (3.58)

This lemma is fairly straightforward. All we have to do is perform an
integration in each pair of �s j and r j−1. However, there are some technical issues
in doing this. We rely on the following lemma which is easily proven.

Lemma 3.9 Let r ∈ �+ and s ∈ �. Let
∫

drrd−1eisφ(r )g(r ) ∈ L1(�), r d−1g(r ) ∈
L1(�+), g(r ) ∈ C(�+), and g(r ) ∈ L∞(�+). Assume that φ′′(r ) > a > 0, φ′(r )0,
φ(r ) = 0 iff. r = r0, and φ′(r0) > 0. Then

∫ ∞

−∞
ds

∫
drrd−1eisφ(r )g(r ) = 2π

rd−1
0 g(r0)

|φ′(r0)| . (3.59)

We now use Lemma 3.9 to prove Lemma 3.8.
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Proof of Lemma 3.8: We need to show that the form of L (2)
n (t) is amenable to

the application of Lemma 3.9. We do this in n steps. We first integrate in rn−1

and �sn , then we integrate in rn−2 and �sn−1, and so on down to r0 and �s1. At
each step we show that we can apply Lemma 3.9. The main tool in showing this is
Lemma 3.2.

One issue in all this is justifying the use of Fubini. We can deal with this
concern by introducing factors e−δ�s j for j = 1, . . . , n on the right hand side of
(3.56). If we take δ → 0 we recover L (2)

n (t) by Lemma 3.2. With this factor the
integral is absolutely convergent and we may apply Fubini as we please.

One additional sticking point is the case of |pn| = 0, but this situation can be
ignored since it has Lebesgue measure zero. �

3.3.5. The Weak Limit

Up to this point the only assumption about our initial data that we have
needed is its membership in L2(�d ). Now we would like to take the limit
of Wε . In order to do this and have asymptotic bounds in ε we depend on
the WKB form of our initial data given by (1.3). Specifically we have the
following lemma which is a consequence of a standard stationary phase
argument. (4,6)

Lemma 3.10 Wε(0, x, p) = h2(x)δ(p − ∇S(x)) + O(ε) in S ′(�d × �d ).

If we define

J̃ (x, p; �s) = (2π |p|)n

∫ n−1

dµ̂J (x +
n∑

k=0

|p|µ̂k(sk − sk+1), |p|µ̂0)

×
n−1∏
j=0

R̂(|p|µ̂ j − |p|µ̂ j+1), (3.60)

then

L (2)
n (t) = (2π )d/2

∫ t,n

ds

(∫
dxdp J̃ (x, p; �s)Wε(0, x, p)

)
(3.61)

Notice that J̃ is not in S(�d × �d ) due to the singularity at p = 0.
However, the singularity exists on a surface of dimension 3 and since we
are integrating over �3 × �3 this singularity will not effect the stationary
phase arguments that make Lemma 3.10 true. So we arrive at the following
lemma.
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Lemma 3.11
∣∣∣∣L (2)

n (t) −
(

(2π )d/2
∫ t,n

ds

∫
dx(2π |∇S(x)|)n

∫ n−1

dµ̂

J (x +
n∑

k=0

|∇S(x)|µ̂k(sk − sk+1), |∇S(x)|µ̂0)

n−1∏
j=0

R̂(|∇S(x)|µ̂ j − |∇S(x)|µ̂ j+1)h2(x)

)∣∣∣∣ ≤ ε
(Ct)n

n!
. (3.62)

4. SIMPLE DIAGRAMS

In this section we analyze simple diagrams. We first write down an explicit
formula for simple diagrams. We then use our formal stationary phase assumption
to write down a formal asymptotic expansion for the simple diagrams. It is possible
to prove that our asymptotic expansion for simple diagrams holds rigorously, but
the proof contains many details and is essentially the same as for the ladder
diagram case and so we do not include it here. Details concerning the proof of the
stationary phase expansion for the simple diagrams can be found in Refs. 7.

A simple diagram can be characterized by the number of ladder rungs it
contains and the number of potential interactions that occur between each ladder
rung. We set the following notation which uniquely describes a simple diagram.

• A = number of ladder rungs
• jk = 1

2 (the number of vertices between the kth and (k+1)th rungs in the
top section of the diagram)

• hk = 1
2 (the number of vertices between the kth and (k+1)th rungs in the

bottom section of the diagram)
• Mk = jk + hk

• n = A + 2( j0 + · · · + jA)
• n′ = A + 2(h0 + · · · + h A)

For the rest of this section, we assume that the pairing π corresponds to the simple
diagram specified by the above variables.

In Figure 6 we represent a generic piece of a simple diagram between two
ladder rungs. Notice that the momentum and time variable indices are different than
those used for ladder diagrams. The notation pk, j represents the j th momentum
between the kth and k + 1th rungs of the simple diagram.

In the following sections we will make use of the notation we have developed
for ladder diagrams. However, the notation for time and momentum variables
introduced through Figure 6 is different than that used for ladder diagrams. The
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Fig. 6. Notation for Arbitrary Simple Diagram. I = jk and H = hk .

following substitutions will change notation from the ladder diagram case to the
simple diagram case:

pk,1 → pk .

sk,1 → sk .

A → n (4.1)

So for instance in the ladder diagram case we have �sk = sk − s ′
k . In the

simple diagram notation this becomes �sk = sk,1 − s ′
k,1. Similarly in the ladder

diagram case we have
∫ t,n

ds =
∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn, (4.2)

in the simple diagram case this notation becomes
∫ t,A

ds =
∫ t

0
ds1,1

∫ s1,1

0
ds2,1 . . .

∫ sA−1,1

0
dsA,1. (4.3)

Or, to give another example, in the ladder diagram case we have

φL D(p0, p1, . . . , pn,�s1, . . . ,�sn)

= −p2
0�s1 + p2

1(�s1 − �s2) + . . . + p2
n−1(�sn−1 − �sn) + p2

n�sn, (4.4)

and in the simple diagram case this formula becomes

φL D(p0,1, p1,1, . . . , pA,1,�s1, . . . , �sA)

= −p2
0,1�s1 + p2

1,1(�s1 − �s2) + . . . + p2
A−1,1(�sA−1 − �sA)

+p2
A,1�sA. (4.5)

Finally we introduce some notation that is unique to the simple diagram case.
The reader is encouraged to skip this notation until it is first used in Eq. 4.8

∫ (a,b),J

d�sk =
∫ b

a
dsk,2

∫ sk,2

a
dsk,3 . . .

∫ sk,2J

a
dsk,2J+1.
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∫ (a,b),H

d �s ′
k =

∫ b

a
ds ′

k,2

∫ s ′
k,2

a
ds ′

k,3 . . .

∫ s ′
k,2H

a
ds ′

k,2H+1. (4.6)

4.1. Simple Diagram Formula

Before writing out the full formula for a simple diagram we will write out
the portion of the formula corresponding to the part of the diagram between the
kth and k + 1th rung. As we did in the ladder diagram case, we first explicitely
evaluate the pairings of the potential terms that correspond to the given simple
diagram. However, for the moment, we only consider the pairings between the kth
and k + 1th ladder rungs. We refer to this smaller sets of pairings as πk . We do not
include in πk the pairing corresponding to either the kth or k + 1th ladder rung.
We have then

Eπk

⎡
⎣

2 jk∏
j=1

V̂ (pk, j − pk, j+1)
2hk∏
h=1

¯̂V (p′
k,h − p′

k,h+1)

⎤
⎦

=
jk∏

j=1

R̂(pk,1 − pk,2 j )δ(pk,1 − pk,2 j+1)

×
hk∏

h=1

¯̂R(p′
k,1 − p′

k,2h)δ(p′
k,1 − p′

k,2h+1) (4.7)

It is then easy to show that we have the following formula for the simple
diagram associated with π :

Eπ

[
ψ̂n

(
t,

p0,1

ε

)
¯̂
ψn′

(
t,

p′
0,1

ε

)]

= 1

εA

∫ t,A

ds

∫ t,A

ds ′
∫ A∏

j=1

dp j,1 exp
[−i

2ε
φL D

]
fL D

A∏
k=0

Fk ; (4.8)

where

p0,1 − p′
0,1 = ζ, (4.9)

Fk =
(−1

ε

) jk(−1

ε

)hk
∫ (sk,1,sk+1,1), jk

d�sk

∫ (s ′
k,1,s

′
k+1,1),hk

d�s ′
k

∫ jk∏
j=1

dpk,2 j

×
∫ hk∏

h=1

dpk,2h exp
[−i

2ε
(φSD,k + εφSD,k,1 + ε2φSD,k,2)

]
fk, (4.10)
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fk =
jk∏

j=0

R̂
(

pk,1 + ε
ζ

2
− pk,2 j

) hk∏
h=0

R̂
(

pk,1 − ε
ζ

2
− p′

k,2h

)
, (4.11)

and

φSD,k =
jk∑

j=1

(
p2

k,2 j − p2
k,1

)
(sk,2 j − sk,2 j+1)

−
hk∑

h=1

(
p′

k,2h
2 − pk,1

2
)
(s ′

k,2h − s ′
k,2h+1), (4.12)

φSD,k,1 = −pk,1 · ζ

⎛
⎝

jk∑
j=1

sk,2 j − sk,2 j+1 +
hk∑

h=1

s ′
k,2h − s ′

k,2h+1

⎞
⎠ ,

φSD,k,2 = −ζ 2

4

⎛
⎝

jk∑
j=1

sk,2 j − sk,2 j+1 −
hk∑

h=1

s ′
k,2h − s ′

k,2h+1

⎞
⎠ . (4.13)

Notice that our formula for the simple diagram, Eq. (4.8), is identical to that
of a ladder diagram of length A except for the term

∏
Fk .

4.2. Formal Stationary Phase Expansion for Simple Diagrams

We are interested in computing an expansion for the following integral:

L SD
n,n′ (t) =

∫
dp0,1dζ Ĵ (ζ, p0,1)

1

εd
Eπ

[
ψ̂n

(
t,

p0,1

ε
+ ζ

2

)
¯̂
ψn′

(
t,

p0,1

ε
− ζ

2

)]
.

(4.14)

Plugging in our formula for a simple diagram pairing, Eq. (4.8), gives the follow-
ing:

L SD
n,n′ (t) =

∫
dp0,1dζ Ĵ (ζ, p0,1)

1

εd

1

εA

∫ t,A

ds

∫ t,A

ds ′

×
∫ A∏

j=1

dp j,1 exp
[−i

2ε
φL D

]
fL D

A∏
k=0

Fk . (4.15)

We compute a stationary phase expansion for L SD
n,n′ formally. We do this

in three steps. First, we find a stationary phase expansion for each Fk . We use
this expansion to write down an expansion for

∏A
k=0 Fk that allows us to reduce

the simple diagram into a ladder diagram. Finally we apply our ladder diagram
analysis to the reduced simple diagram.
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4.2.1. Stationary Phase Expansion for Fk and
∏A

k=0 Fk

In order to compute Fk , we first find the stationary phase surface of φSD,k .
We introduce the variables rk,2 j , r ′

k,2h, µ̂k,2 j , µ̂
′
k,2h such that pk,2 j = rk,2 j µ̂k,2 j and

p′
k,2h = r ′

k,2hµ̂
′
k,2h . We also introduce the time variables �sk,2 j = sk,2 j − sk,2 j+1

and �s ′
k,2h = sk,2h − s ′

k,2h+1. Then our stationary phase surface is specified by the
following constraints:

rk,2 j = |pk,1| for j = 1, . . . , jk ;

r ′
k,2h = |pk,1| for h = 1, . . . , hk ;

�sk,2 j = 0 for j = 1, . . . , jk ;

�s ′
k,2h = 0 for h = 1, . . . , hk . (4.16)

Now we want to apply a formal stationary phase argument in these new
variables. First we rewrite the integral

∫ (sk,1,sk+1,1), jk d�sk in terms of our new coor-
dinates.

∫ (sk,1,sk+1,1), jk

d�sk =
∫ sk,1

sk+1,1

dsk,2

∫ sk,2

sk+1,1

dsk,4 . . .

∫ sk,2 jk −2

sk+1,1

dsk,2 jk

×
(∫ sk,2−sk,4

0
d�sk,2

∫ sk,4−sk,6

0
d�sk,4 . . .

∫ sk,2 jk −sk+1,1

0
d�sk,2 jk

)
(4.17)

A similar formula holds for
∫ (s ′

k,1,s
′
k+1,1),hk d�s ′

k .
The above formula reveals that the stationary phase points of φSD,k are always

on the boundary of the region of integration! Hence we cannot apply our formal
stationary phase expansion. However we may alter the boundary to make the
computation of Fk straightforward.

Our idea is to change the formula for Fk by replacing the region of integration
given by

∫ (sk,1,sk+1,1), jk d�sk by a region �k defined as follows:
∫

�k

d�sk =
∫ sk,1

sk+1,1

dsk,2

∫ sk,2

sk+1,1

dsk,4 . . .

∫ sk,2 jk −2

sk+1,1

dsk,2 jk

×
(∫ t

0
d�sk,2

∫ t

0
d�sk,4 . . .

∫ t

0
d�sk,2 jk

)
(4.18)

We similarly define regions �′
k to replace the regions in

∫ (s ′
k,1,s

′
k+1,1),hk d�s ′

k . Then we
define F̃k as the altered form of Fk . That is,

F̃k =
(−1

ε

) jk (−1

ε

)hk
∫

�k

d�sk

∫

�′
k

d�s ′
k

∫ jk∏
j=1

dpk,2 j

∫ hk∏
h=1

dpk,2h

× exp

[−i

2ε
(φSD,k + εφSD,k,1 + ε2φSD,k,2)

]
fk, (4.19)
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If we consider Fk − F̃k , no stationary point of φSD,k exists in the resultant
region of integration. It follows easily from our formal stationary phase expansion
that we can bound |Fk − F̃k | as follows:

|Fk − F̃k | ≤ C jk+hk
√

ε
(sk,1 − sk+1,1) jk

jk!

(s ′
k,1 − s ′

k+1,1)hk

hk!
(4.20)

The point of all this is that F̃k is trivial to compute.

F̃k = (−1) jk+hk
�1

(
pk,1, t, ζ, ε

ζ

2

) jk (sk,1 − sk+1,1) jk

jk!

× �̄1
(

pk,1, t, ζ,−ε
ζ

2

)hk (s ′
k,1 − s ′

k+1,1)hk

hk!
; (4.21)

where

�1(p, t, ζ, η)

×
∫ t

ε

0
ds

∫
dq exp

[−is

2
(q2 − p2) − ε2 p · ζ s − ε3 ζ 2

4
s

]
R̂(p + η − q). (4.22)

We are not quite done with F̃k because the �1 terms have ε, t , and ζ

dependence which we would like to remove. This dependence can easily be
removed through a taylor series expansion and an application of Lemma 3.2.
Set

�0(p) =
∫ ∞

0
ds

∫
dq exp

[−is

2
(q2 − p2)s

]
R̂(p − q). (4.23)

Then ∣∣∣∣�0(p) − �1

(
p, t, ζ, ε

ζ

2

)∣∣∣∣ ≤ C

√
ε

t
(1 + |ζ |2)(1 + |p|). (4.24)

We can now write a very compact expansion for Fk .

∣∣Fk − Fk,lim

∣∣ ≤ C(1 + |ζ |2)(1 + |p|)
√

ε

t
Fk,error (4.25)

where

Fk,lim = (−1)Mk
(sk,1 − sk+1,1) jk

jk!

(s ′
k,1 − s ′

k+1,1)hk

hk!
�0(pk,1) jk �̄0(pk,1)hk ,

Fk,error = C Mk
(sk,1 − sk+1,1) jk

( jk − 1)!

(s ′
k,1 − s ′

k+1,1)hk

(hk − 1)!
. (4.26)
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We now turn to finding an expansion of
∏A

k=0 Fk . We cannot just write this
as a product of expansions of each Fk because then we would have terms of order
ζ A which we would be unable to control. Instead we simply note that rather than
applying our stationary phase arguments to each Fk separately we may apply the
arguments to all the Fk at once. Then a series of triangle inequalities allows us to
replace each �1 by �0 and arrive at the following bound:

∣∣∣∣∣
A∏

k=0

Fk −
A∏

k=0

Fk,lim

∣∣∣∣∣ ≤ C(1 + |ζ |2)

(
A∑

k=0

1 + |pk,1|
)√

ε

t

A∏
k=0

Fk,error. (4.27)

4.2.2. Reduction of Simple Diagram to Ladder Diagram

If we use the approximation of
∏A

k=0 Fk given by (4.27) in the expression for
L SD

n,n′ (t) given by (4.15) we arrive at

L SD
n,n′ (t)

=
∫

dp0,1dζ Ĵ (ζ, p0,1)
1

εd

1

εA

∫ t,A

ds

∫ t,A

ds ′
∫ A∏

j=1

dp j,1 exp

[−i

2ε
φL D

]

× fL D

(
A∏

k=0

Fk,lim + �(1 + ζ 2)
( A∑

k=0

1 + |pk,1|
)√

ε

A∏
k=0

Fk,error

)
; (4.28)

where � is defined to satisfy

A∏
k=0

Fk −
A∏

k=0

Fk,lim = �(1 + |ζ |2)

(
A∑

k=0

1 + |pk,1|
)√

ε

t

A∏
k=0

Fk,error. (4.29)

Notice that by (4.27), |�| ≤ C .
The formulas directly above demonstrate that we have essentially reduced the

simple diagram into a ladder diagram of length A; the only difference being the
inclusion of the terms Fk,lim and Fk,error. We would now like to apply our ladder
diagram analysis to L SD

n,n′ (t), however the � term prevents us from analyzing the
remainder term.

In order to proceed, we can instead of performing a stationary phase analysis
on

∏A
k=0 Fk and then a stationary phase analysis on the resulting ladder diagram

simply perform a single higher dimensional stationary phase analysis on the whole
simple diagram. If we do this we can arrive at the following expansion for L SD

n,n′ (t).
Set L = M0 + . . . + MA. Let δk, j be the Kronecker delta function.
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∣∣∣∣L SD
n,n′ (t)

−(2π )d/2
∫ t,A

ds

∫
dpA,1

∫
dx

∫ n

dµ̂J (x, |pA,1|µ̂0)�AWε(0, x0, pA,1)

∣∣∣∣

≤ √
ε

(Ct)A+L−1
√

t

(A + L)!

A∏
k=0

Mk!

jk!hk!
(1 − δA+L ,0); (4.30)

with

�A(µ̂, pA, s1, . . . , sn) =
(

A∏
k=0

(−1)Mk (�0(pA) jk (�̄0(pA))hk
(sk − sk+1)Mk

jk!hk!

)

×
(

A−1∏
k ′=0

σ (|pA|µ̂k, |pA|µ̂k+1)

)
, (4.31)

x0 = x −
A∑

m=0

|pA,1|µ̂m(sm,1 − sm+1,1) (4.32)

The above formulas require some explanation. First, in the case A + L = 0, Eq.
(3.8) shows that our stationary phase approximation is exact. This explains the
presence of the Kronecker delta function term (1 − δA+L ,0) on the right hand side
of (4.30). Second, we have used the following identity to simplify the error term:

∫ t,A

ds
A∏

k=0

(sk,1 − sk+1,1)Mk

jk!hk!
= t A+L

(A + L)!

A∏
k=0

Mk!

jk!hk!
. (4.33)

Besides writing an expansion for each simple diagram, we can also find a
bound for each simple diagram. We have the following lemma which will be
useful to us in the following section.

Lemma 4.1

∣∣L SD
n,n′ (t)

∣∣ ≤ (C(1 + t))A+L

(A + L)!

A∏
k=0

Mk!

jk!hk!
. (4.34)

Proof of Lemma 4.1: We have

∣∣L SD
n,n′ (t)

∣∣ ≤ C A(sup
∫ t,A

ds|�|) sup
�s, �̂µ

|
∫

dpA,1

∫
dx J (x, |pA,1|µ̂0)Wε(x0, pA,1)|

+√
ε

(Ct)A+L−1
√

t

(A + L)!

A∏
k=0

Mk!

jk!hk!
(1 − δA+L ,0). (4.35)
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Then we have the following bound which follows from Eq. 4.33:

sup
∫ t,A

ds|�| ≤ (Ct)A+L

(A + L)!

A∏
k=0

Mk!

jk!hk!
(4.36)

The proof is finished with the following bound,

| sup
�s, �̂µ

∫
dpA,1

∫
dx J (x, |pA,1|µ̂0)Wε(x0, pA,1)|

≤ sup
�s, �̂µ

∫
dpA,1

∫
dζ | Ĵ (ζ, |pn|µ̂0)| 1

εd

∣∣∣∣ψ̂
( pA,1

ε
− ζ

2

)
¯̂
ψ
( pA,1

ε
+ ζ

2

)∣∣∣∣ ≤ C‖ψ‖2
2

(4.37)

�

5. PROOF OF MAIN THEOREM

Recall that we are interested in an expansion for
∫

dpdz J (z, p)
1

εd
E

[
Wψ(t)

(
p

ε
, z

)]
= L1 + L2 + L3 (5.1)

where the L terms are defined by (2.13). Our stationary phase expansions coupled
with some bounds developed in Refs. 3 will allow us to control each of the L
terms.

In this section, in order to compactify our formulas, we use the following
notation similar to Refs. 3:

C̃π
n,n′ = Eπ

[
ψ̂n

(
t,

p

ε
+ ζ

2

)
¯̂
ψn′

(
t,

p

ε
− ζ

2

)]
. (5.2)

We start by considering L1. We expand L1 as follows:

L1 = L1,SD + L1,NSD (5.3)

where

L1,SD = 1

(2π )d/2

N∑
n=0

N∑
n′=0

∑
π=simple

∫
dpdζ

¯̂J (ζ, p)
1

εd
C̃π

n,n′ ;

L1,NSD = 1

(2π )d/2

N∑
n=0

N∑
n′=0

∑
π �=simple

∫
dpdζ

¯̂J (ζ, p)
1

εd
C̃π

n,n′ . (5.4)

We can use our simple diagram expansion to prove the following lemma.
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Lemma 5.1

|L1,SD −
∫

dpdx J (x, p)B(x, p)|

≤ C
√

εt exp[Ct exp[Ct]] + exp[C(1 + t)]
(C(1 + t2))N

N !
. (5.5)

Proof of Lemma 5.1: We can rewrite L1,SD in terms of our simple diagram
notation. Recall Mk = jk + hk and L = M0 + M1 + . . . + MA.

L1,SD =
∑

A

∑
M0

. . .
∑
MA

∑
j0

. . .
∑

jA︸ ︷︷ ︸
A+ j0+...+ jA≤N ,A+h0+...+h A≤N

∫
dpdζ

¯̂J (ζ, p)
1

εd
C̃π

n,n′ ; (5.6)

where the pairing π is the simple diagram specified by the variables in the external
sum. We can now plug in our stationary phase expansion for each simple diagram,
equation (4.30).

L1,SD

=
∑

A

∑
M0

. . .
∑
MA

∑
j0

. . .
∑

jA︸ ︷︷ ︸
A+ j0+...+ jA≤N ,A+h0+...+h A≤N

(∫ t,A

ds

∫
dpA,1

∫
dx

∫ n

dµ̂J (x, |pA,1|µ̂0)

×�AWε(0, x0, pA,1) + √
ε

(Ct)A+L−1
√

t

(A + L)!

A∏
k=0

Mk!

jk!hk!
(1 − δA+L ,0)

)
(5.7)

We would now like to remove the restrictions A + j0 + . . . + jA ≤ N and
A + j0 + . . . + jA ≤ N from the summation above and allow the simple diagram
variables to range over all possible values. Through Lemma 4.2.2 it is fairly easy
to bound the error caused by replacing the restricted sum by an unrestricted sum.
Specifically we can express L1,SD as follows:

L1,SD = L1,SD,lim + L1,SD,error1 + L1,SD,error2; (5.8)

where

L1,SD,lim =
∞∑

A=0

∞∑
M0=0

. . .

∞∑
MA=0

M0∑
j0=0

. . .

MA∑
jA=0

∫ t,A

ds

∫
dpA,1

∫
dx

∫ n

dµ̂

× J (x, |pA,1|µ̂0)�AWε(0, x0, pA,1); (5.9)
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and where we have the following bounds for L1,SD,error1 and L1,SD,error2. The bound
for L1,SD,error2 is achieved by applying Lemma 4.1.

L1,SD,error1

=
∑

A

∑
M0

. . .
∑
MA

∑
j0

. . .
∑

jA︸ ︷︷ ︸
A+ j0+···+ jA≤N ,A+h0+···+h A≤N

√
ε

(Ct)A+L−1
√

t

(A + L)!

A∏
k=0

Mk!

jk!hk!
(1 − δA+L ,0),

L1,SD,error2 ≤
∑

A

∑
M0

. . .
∑
MA

∑
j0

. . .
∑

jA︸ ︷︷ ︸
A+M0+···+MA≥N

(C(1 + t))A+L

(A + L)!

A∏
k=0

Mk!

jk!hk!
. (5.10)

We can easily derive a bound for L1,SD,error1. Using the simple bound (A +
L)! ≥ A!M0!M1! · · · MA! we have

L1,SD,error1 ≤
∞∑

A=0

∞∑
M0=0

. . .

∞∑
MA=0

√
ε

2A+1(Ct)A+L−1
√

t

(A + L)!
(1 − δA+L ,0)

≤
∞∑

A=0

√
ε

2A+1(Ct)A−1
√

t

(A)!

( ∞∑
M=0

(Ct)M

(M)!

)A+1

(1 − δA+L ,0)

≤ C
√

εt exp[Ct exp[Ct]]. (5.11)

A bound for L1,SD,error2 requires a bit more work. We first note that a simple
inductive argument gives the following bound:

∑
M0

. . .
∑
MA︸ ︷︷ ︸

M0+...+MA=L

1 ≤ (L + A)A

A!
(5.12)

Using this bound and Stirling’s formula, we have the following bound for
L1,SD,error2:

L1,SD,error2 ≤
∑

A

∑
L︸ ︷︷ ︸

A+L≥N

(C(1 + t))A+L

(A + L)L AA
(5.13)
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We split the sum into three pieces.

∑
A

∑
L︸ ︷︷ ︸

A+L≥N

=
∞∑

A=N

∞∑
L=0

+
N∑

A=0

∞∑
L=N

+
N∑

A=0

N∑
L=N−A

. (5.14)

We bound the contribution of each of these three sums. For the first sum, we have
the following bound.

∞∑
A=N

∞∑
L=0

(C(1 + t))A+L

(A + L)L AA
≤

∞∑
A=N

(C(1 + t))A

AA
exp[C(1 + t)]

≤ exp[C(1 + t)]
(C(1 + t))N

N !
. (5.15)

The second sum has the same bound as the first sum. Finally for the third sum we
have,

N∑
A=0

N∑
L=N−A

(C(1 + t))A+L

(A + L)L AA
≤ N 2(C(1 + t))2N sup

A+L=N

1

N L AA

= N 2(C(1 + t))2N sup
A≤N

1

N N N−A AA

= N 2(C(1 + t))2N 1

N N

≤ (C(1 + t2))N

N !
(5.16)

So finally we arrive at the following bound for L1,SD,error2:

L1,SD,error2 ≤ exp[C(1 + t)]
(C(1 + t2))N

N !
. (5.17)

We have left the task of computing L1,SD,lim. We can bring all the summations
except for that depending on A inside the integral. Recall the definition of UA given
by formula 2.3. Then

∞∑
M0=0

. . .

∞∑
MA=0

M0∑
j0=0

. . .

MA∑
jA=0

�A = UA, (5.18)

where we have used the following equality which follows from Lemma 3.9:

2Re(�0(p)) = �(p). (5.19)
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Now if we apply Lemma 3.10 to evaluate the weak limit of Wε we have

L1,SD,lim =
∞∑

A=0

(J, BA) + Cε = (J, B) + Cε. (5.20)

�

At this point we need to introduce some results of Erdös and Yau. (3) Up to
now we have kept track of t in all our bounds. However for the rest of this paper
we will absorb t into the generic constant C . We do this for purposes of clarity,
tracking t is not difficult but it produces unreadable formulas that obscure the core
result.

In order to control L1,NSD we use a lemma of Erdös and Yau. The following
lemma is lemmas 3.5, 3.6, and 4.1 in Refs. 3.

Lemma 5.2∫
dpdζ

¯̂J (ζ, p)
1

εd
C̃π

n,n′ ≤ εC N | log ε|N+3 f orπ = non − simple pairing .

(5.21)

|L1,NSD| ≤ εN 2 N !C N | log ε|N+3. (5.22)

In order to control L2 and L3 we need to bound �N . The following lemma
is a slightly improved version of Lemma 5.2 in Refs. 3. We achieve the slight
improvement by substituting our Lemma 4.1 for Lemma 3.7 in Refs. 3.

Lemma 5.3

E[‖�N ‖2
2] ≤ C N N 2κ2

N !
+ C N N 2κ2| log ε|4N+5ε(4N )! + C N | log ε|4N+5(4N )!

ε2κ N

(5.23)

where we may choose any positive value for κ .

We are finally ready to prove our Theorem 2. This proof closely follows
arguments found in Refs. 3.

Proof of Theorem 2: Our basic task in this proof will be to choose N and then
apply the lemmas above to bound L2, L3, and L1 − L1,SD,lim.

Set N and κ as follows:

N = 1

9

| log ε|
log | log ε| .

κ = | log ε|36. (5.24)
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Note the following bounds:

N ! ≤ Cδ

(
1

ε

)1/9−δ

,

| log ε|N =
(

1

ε

)1/9

,

κ N =
(

1

ε

)4

. (5.25)

We first turn to bounding L1. Applying Lemmas 5.1 and 5.2 we have

|L1,SD − (J, B)| ≤ √
ε + C N

N !
≤ √

ε + Cδε
1/9−δ, (5.26)

and

|L1,NSD| ≤ εN 2C N | log ε|N+3 N ! ≤ Cδε
7/9−δ. (5.27)

Putting the two bounds above together gives us the following error bound for L1:

|L1 − (J, B)| ≤ √
ε + Cδε

1/9−δ. (5.28)

Now we turn our attention to L2.

|L2| ≤ C
N−1∑
j=0

(
E
[‖ψ̂ j (t, p)‖2

2

])1/2(
E
[‖�N (t, p)‖2

2

]1/2
)1/2

; (5.29)

where we have applied Schwartz twice. From Lemma 5.2 and Lemma 4.1 we have
the bound

N−1∑
j=0

(
E
[‖ψ̂ j (t, p)‖2

2

])1/2
≤ C + εN 3C N | log ε|N+3 N ! ≤ C. (5.30)

From Lemma 5.3 we have the bound

E[‖�N (t, p)‖2
2] ≤ C N N 2κ2| log ε|4

N !
+ C N N 2κ2| log ε|4N+5ε(4N )!

+C N | log ε|4N+5(4N )!

ε2κ N

≤ Cδε
1/9−δ. (5.31)

Using the two bounds above we have the following bound for L2.

|L2| ≤ Cδε
1/18−δ. (5.32)
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Finally we bound L3.

|L3| ≤ E[‖�N ‖2
2] ≤ Cδε

1/9−δ. (5.33)

Summing the bounds for L1, L2, and L3 finishes the proof. �
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